Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Initialization profoundly affects evolutionary algorithm (EA) efficacy by dictating search trajectories and convergence. This study introduces a hybrid initialization strategy combining empty-space search algorithm (ESA) and opposition-based learning (OBL). OBL initially generates a diverse population, subsequently augmented by ESA, which identifies under-explored regions. This synergy enhances population diversity, accelerates convergence, and improves EA performance on complex, high-dimensional optimization problems. Benchmark results demonstrate the proposed method's superiority in solution quality and convergence speed compared to conventional initialization techniques.more » « lessFree, publicly-accessible full text available July 14, 2026
-
Identifying knee and elbow points in performance curves is a critical task in various domains, including machine learning and system design. These points represent optimal trade-offs between cost and performance, facilitating efficient decision-making and resource allocation. However, accurately determining the knees and elbows in curves poses a significant challenge. To address this challenge, we introduce Kneeliverse, an open-source library dedicated to knee/elbow point detection. Kneeliverse incorporates a suite of well-established knee-detection algorithms, including Menger, L-method, Kneedle, and DFDT. Additionally, Kneeliverse extends these algorithms to detect multiple knees and elbows in complex curves, employing a recursive approach. Kneeliverse further includes Z-Method, a recently developed algorithm specifically designed for multi-knee detection.more » « lessFree, publicly-accessible full text available May 1, 2026
-
Storage cache hierarchies include diverse topologies, assorted parameters and policies, and devices with varied performance characteristics. Simulation enables efficient exploration of their configuration space while avoiding expensive physical experiments. Miss Ratio Curves (MRCs) efficiently characterize the performance of a cache over a range of cache sizes, revealing ‘‘key points’’ for cache simulation, such as knees in the curve that immediately follow sharp cliffs. Unfortunately, there are no automated techniques for efficiently finding key points in MRCs, and the cross-application of existing knee-detection algorithms yields inaccurate results. We present a multi-stage framework that identifies key points in any MRC, for both stack- based (e.g., LRU) and more sophisticated eviction algorithms (e.g., ARC). Our approach quickly locates candidates using efficient hash-based sampling, curve simplification, knee detection, and novel post-processing filters. We introduce Z-Method, a new multi-knee detection algorithm that employs statistical outlier detection to choose promising points robustly and efficiently. We evaluated our framework against seven other knee-detection algorithms, identifying key points in multi-tier MRCs with both ARC and LRU policies for 106 diverse real-world workloads. Compared to naïve approaches, our framework reduced the total number of points needed to accurately identify the best two-tier cache hierarchies by an average factor of approximately 5.5x for ARC and 7.7x for LRU. We also show how our framework can be used to seed the initial population for evolutionary algorithms. We ran 32,616 experiments requiring over three million cache simulations, on 151 samples, from three datasets, using a diverse set of population initialization techniques, evolutionary algorithms, knee-detection algorithms, cache replacement algorithms, and stopping criteria. Our results showed an overall acceleration rate of 34% across all configurations.more » « less
-
Simulating storage cache hierarchies enables effi- cient exploration of their configuration space, including diverse topologies, parameters and policies, and devices with varied performance characteristics, while avoiding expensive physical experiments. Miss Ratio Curves (MRCs) efficiently characterize the performance of a cache over a range of cache sizes. These useful tools reveal “key points” for cache simulation, such as knees in the curve that immediately follow sharp cliffs. Unfortunately, there are no automated techniques for efficiently finding key points in MRCs, and the cross-application of existing knee-detection algorithms yields inaccurate results. We present a multi-stage framework that identifies key points in any MRC, for both stack-based (e.g., LRU) and more sophisticated eviction algorithms (e.g., ARC). Our approach quickly locates candidates using efficient hash-based sampling, curve simplification, knee detection, and novel post-processing filters. We introduce Z-Method, a new multi-knee detection algorithm that employs statistical outlier detection to choose promising points robustly and efficiently. We evaluate our framework against seven other knee-detection algorithms, using both ARC and LRU MRCs from 106 diverse real-world workloads, and apply it to identify key points in multi-tier MRCs. Compared to naïve approaches, our framework reduces the total number of points needed to accurately identify the best two-tier cache hierarchies by an average factor of approximately 5.5x for ARC and 7.7x for LRU.more » « less
An official website of the United States government
